7 | 0 | 7 |
下载次数 | 被引频次 | 阅读次数 |
目的:探究长链非编码RNA LINC01088在乳腺癌组织中的表达水平,及其对乳腺癌细胞的增殖、迁移和侵袭的影响。方法:使用在线数据库GEPIA及bc-GenExMiner分析LINC01088表达量与患者临床特征及预后的相关性。实时荧光定量PCR验证正常乳腺上皮细胞系MCF10A与乳腺癌细胞系MDA-MB-231、BT-549、MCF7中LINC01088的表达差异。通过在乳腺癌细胞中过表达LINC01088,检测LINC01088对乳腺癌细胞生物学功能的影响。Incucyte细胞增殖实验用于测定LINC01088对乳腺癌细胞增殖的影响,Transwell实验用于检测LINC01088对乳腺癌细胞迁移和侵袭能力的影响。采用Western blot方法检测细胞增殖、转移相关细胞通路中蛋白水平表达变化。结果:GEPIA数据库显示乳腺癌组织中LINC01088表达量比正常乳腺组织低(P<0.05)。bc-GenExMiner数据库显示人表皮生长因子受体2(HER2)阳性患者的乳腺癌组织中LINC01088水平更高(P<0.0001),LINC01088高表达的乳腺癌患者总生存期(P=0.0006)及无病生存期(P=0.0002)更长。正常乳腺上皮细胞系中LINC01088 mRNA表达水平高于乳腺癌细胞系(P<0.05)。过表达LINC01088后,3种乳腺癌细胞系增殖和迁移侵袭能力显著降低(P<0.01)。LINC01088可以增加p21、p27的表达(P<0.01),降低Snail、Slug、PI3K的表达及AKT的磷酸化水平(P<0.05)。结论:LINC01088在人乳腺癌组织中低表达。体外实验结果提示LINC01088可能通过抑制PI3K-AKT通路及上皮-间质转化,进而抑制乳腺癌细胞的增殖、迁移和侵袭等生物学行为。
Abstract:Objective: To investigate the expression of LINC01088 in breast cancer and its effects on cell proliferation, migration, and invasion. Methods: GEPIA and bc-GenExMiner were used to analyze the correlation between LINC01088 expression levels and clinical characteristics as well as prognosis. The expression of LINC01088 in MCF10A and MDA-MB-231, BT-549, MCF7 were detected by Real-time PCR. The effect of LINC01088 on the biological function of breast cancer cells was examined by overexpressing LINC01088 in breast cancer cells. Cell proliferation was assessed using the Incucyte assay, while cell migration and invasion were evaluated using Transwell assays. Western blotting was employed to detect the expression of proteins associated with cell proliferation and metastasis. Results: LINC01088 expression was significantly lower in breast cancer tissues compared to normal breast tissues(P<0.05). Data from the bc-GenExMiner database revealed higher LINC01088 expression in HER2 positive patients(P<0.0001), correlating with longer overall survival(P=0.0006) and disease-free survival(P=0.0002). The mRNA expression level of LINC01088 in normal breast epithelial cell line was higher than that in breast cancer cell lines(P<0.05). Overexpression of LINC01088 significantly reduced proliferation, migration, and invasion in three breast cancer cell lines(P<0.01). Additionally, LINC01088 upregulated p21 and p27(P<0.01), while downregulating Snail, Slug, PI3K, and phosphorylated Akt(P<0.05). Conclusion: LINC01088 expression was significantly reduced in human breast cancer. In vitro, LINC01088 inhibited the proliferation, migration, and invasion of breast cancer cells. This effect may be attributed to its role in suppressing the PI3K-AKT pathway and epithelial-mesenchymal transition.
[1]中国抗癌协会乳腺癌专业委员会,中华医学会肿瘤学分会乳腺肿瘤学组.中国抗癌协会乳腺癌诊治指南与规范(2024年版)[J].中国癌症杂志,2023,33(12):1092-1187.DOI:10.19401/j.cnki.1007-3639.2023.12.004.PI3K
[2] Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136(4):629-641. DOI:10.1016/j.cell.2009.02.006.
[3] Batista PJ, Chang HY. Long noncoding RNAs:cellular address codes in development and disease[J]. Cell, 2013, 152(6):1298-1307. DOI:10.1016/j.cell.2013.02.012.
[4] Huarte M. The emerging role of lncRNAs in cancer[J]. Nat Med,2015, 21(11):1253-1261. DOI:10.1038/nm.3981.
[5] Li J, Huang X, Chen H, et al. LINC01088/miR-22/CDC6 axis regu-lates prostate cancer progression by activating the PI3K/AKT Pathway[J]. Mediators Inflamm, 2023, 2023:9207148. DOI:10.1155/2023/9207148.
[6] Liang F, Luo Q, Han H, et al. Long noncoding RNA LINC01088 inhibits esophageal squamous cell carcinoma progression by targeting the NPM1-HDM2-p53 axis[J]. Acta Biochim Biophys Sin(Shanghai), 2023, 55(3):367-381. DOI:10.3724/abbs.2023021.
[7] Zhou Y, Zhao Z, Jiang C, et al. LINC01088 prevents ferroptosis in glioblastoma by enhancing SLC7A11 via HLTF/USP7 axis[J]. Clin Transl Med, 2025, 15(3):e70257. DOI:10.1002/ctm2.70257.
[8] Zhao H, Li Y, Dong N, et al. LncRNA LINC01088 inhibits the function of trophoblast cells, activates the MAPK-signaling pathway and associates with recurrent pregnancy loss[J]. Mol Hum Reprod, 2021,27(8):gaab047. DOI:10.1093/molehr/gaab047.
[9] Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1):12-49. DOI:10.3322/caac.21820.
[10] Giaquinto AN, Sung H, Newman LA, et al. Breast cancer statistics2024[J]. CA Cancer J Clin, 2024, 74(6):477-495. DOI:10.3322/caac.21863.
[11]王楠,庞坤坤,张飞雪,等.乳腺浸润性导管癌5种分子亚型临床及超声特征[J].中国现代普通外科进展,2024,27(3):204-208.DOI:10.3969/j.issn.1009-9905.2024.03.009.
[12]郑博文,房林.铁死亡在乳腺癌预后和靶向治疗中的研究进展[J].同济大学学报(医学版),2023,44(2):283-288. DOI:10.12289/j.issn.1008-0392.22265.
[13]董鑫,张彤彤,谢晓冬,等.人表皮生长因子受体2阳性乳腺癌的精准治疗[J].中华内分泌外科杂志,2023,17(2):138-142. DOI:10.3760/cma.j.cn.115807-20230220-00045.
[14] Amelio I, Bernassola F, Candi E. Emerging roles of long non-coding RNAs in breast cancer biology and management[J]. Semin Cancer Biol, 2021, 72:36-45. DOI:10.1016/j.semcancer.2020.06.019.
[15] Crudele F, Bianchi N, Reali E, et al. The network of non-coding RNAs and their molecular targets in breast cancer[J]. Mol Cancer,2020, 19(1):61. DOI:10.1186/s12943-020-01181-x.
[16] Yoon J, Oh DY. HER2-targeted therapies beyond breast canceran update[J]. Nat Rev Clin Oncol, 2024, 21(9):675-700. DOI:10.1038/s41571-024-00924-9.
[17] Chang KC, Diermeier SD, Yu AT, et al. MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression[J]. Nat Commun, 2020, 11(1):6438. DOI:10.1038/s41467-020-20207-y.
[18] Briata P, Caputo L, Zapparoli E, et al. LncRNA EPR-induced METTL7A1 modulates target gene translation[J]. Nucleic Acids Res,2022, 50(13):7608-7622. DOI:10.1093/nar/gkac544.
[19] Fu Y, Zhang X, Liu X, et al. The DNMT1-PAS1-PH20 axis drives breast cancer growth and metastasis[J]. Signal Transduct Target Ther, 2022, 7(1):81. DOI:10.1038/s41392-022-00896-1.
[20] Zhang Y, Dong X, Guo X, et al. LncRNA-BC069792 suppresses tumor progression by targeting KCNQ4 in breast cancer[J]. Mol Cancer, 2023, 22(1):41. DOI:10.1186/s12943-023-01747-5.
[21] Zhang Y, Wei S, Chen Z, et al. LncRNA FAISL inhibits Calpain 2-mediated proteolysis of FAK to promote progression and metastasis of triple negative breast cancer[J]. Adv Sci(Weinh), 2024, 11(42):e2407493. DOI:10.1002/advs.202407493.
[22] Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease[J]. Cell, 2017, 170(4):605-635. DOI:10.1016/j.cell.2017.07.029.
[23] Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism[J]. Nat Rev Cancer,2020, 20(2):74-88. DOI:10.1038/s41568-019-0216-7.
[24]杨雪,臧丹丹,王芳.乳腺癌组织中Snail、DCTPP1的表达与临床病理特征和生存状况的关系[J].中国现代普通外科进展,2023,26(4):278-282+287. DOI:10.3969/j.issn.1009-9905.2023.04.006.
[25] Basho RK, Gilcrease M, Murthy RK, et al. Targeting the PI3K/AKT/mTOR pathway for the treatment of mesenchymal triple-negative breast cancer:Evidence from a phase 1 trial of mTOR inhibition in combination with liposomal doxorubicin and bevacizumab[J]. JAMA Oncol, 2017, 3(4):509-515. DOI:10.1001/jamaoncol.2016.5281.
[26] Browne IM, Andre F, Chandarlapaty S, et al. Optimal targeting of PI3K-AKT and mTOR in advanced oestrogen receptor-positive breast cancer[J]. Lancet Oncol, 2024, 25(4):e139-e151. DOI:10.1016/S1470-2045(23)00676-9.
[27] Moulder S, Helgason T, Janku F, et al. Inhibition of the phosphoinositide 3-kinase pathway for the treatment of patients with metastatic metaplastic breast cancer[J]. Ann Oncol, 2015, 26(7):1346-1352. DOI:10.1093/annonc/mdv163.
基本信息:
DOI:
中图分类号:R737.9
引用信息:
[1]刘婕,赵汇,赵琛等.LINC01088对乳腺癌细胞增殖、迁移和侵袭的作用及机制[J].中国现代普通外科进展,2025,28(07):538-544.
基金信息: